Optimizing Memory-Bound SYMV Kernel on GPU Hardware Accelerators

نویسندگان

  • Ahmad Abdelfattah
  • Jack J. Dongarra
  • David E. Keyes
  • Hatem Ltaief
چکیده

Hardware accelerators are becoming ubiquitous high performance scientific computing. They are capable of delivering an unprecedented level of concurrent execution contexts. High-level programming language extensions (e.g., CUDA), profiling tools (e.g., PAPI-CUDA, CUDA Profiler) are paramount to improve productivity, while effectively exploiting the underlying hardware. We present an optimized numerical kernel for computing the symmetric matrix-vector product on nVidia Fermi GPUs. Due to its inherent memory-bound nature, this kernel is very critical in the tridiagonalization of a symmetric dense matrix, which is a preprocessing step to calculate the eigenpairs. Using a novel design to address the irregular memory accesses by hiding latency and increasing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30% fold improvement over the Matrix Algebra on GPU and Multicore Architectures (MAGMA) library in single and double precision arithmetics,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Memory-Bound Numerical Kernels on GPU Hardware Accelerators

Hardware accelerators are becoming ubiquitous high performance scientific computing. They are capable of delivering an unprecedented level of concurrent execution contexts. High-level programming languages (e.g., CUDA), profiling tools (e.g., PAPI-CUDA, CUDA Profiler) are paramount to improve productivity, while effectively exploiting the underlying hardware. We present an optimized numerical k...

متن کامل

A Generic Approach for Developing Highly Scalable Particle-Mesh Codes for GPUs

We present a general framework for GPU-based low-latency data transfer schemes that can be used for a variety of particle-mesh algorithms [8]. This framework allows to hide the latency of the data transfer between GPU-accelerated computing nodes by interleaving it with the kernel execution on the GPU. We discuss as an example the fully relativistic particle-in-cell (PiC) code PIConGPU [5] curre...

متن کامل

HippogriffDB: Balancing I/O and GPU Bandwidth in Big Data Analytics

As data sets grow and conventional processor performance scaling slows, data analytics move towards heterogeneous architectures that incorporate hardware accelerators (notably GPUs) to continue scaling performance. However, existing GPU-based databases fail to deal with big data applications efficiently: their execution model suffers from scalability limitations on GPUs whose memory capacity is...

متن کامل

SqueezCL: Squeezing OpenCL Kernels for Approximate Computing on Contemporary GPUs

Approximate computing provides an opportunity for exploiting application characteristics to improve performance of computing systems. However, such opportunity must be balanced against generality of methods and quality guarantees that the system designer can provide to the application developer. Improved parallel processing in graphics processing units (GPUs) provides one such means for data-le...

متن کامل

Methods for compressible fluid simulation on GPUs using high-order finite differences

We focus on implementing and optimizing a sixth-order finite-difference solver for simulating compressible fluids on a GPU using third-order Runge-Kutta integration. Since graphics processing units perform well in data-parallel tasks, this makes them an attractive platform for fluid simulation. However, high-order stencil computation is memory-intensive with respect to both main memory and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012